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Terminology
In this section, some useful definitions are given.

Fault:An unpermitted deviation of at least one characteristic property or parameter of the system from the acceptable,
usual or standard condition.
Failure: A permanent interruption of a system’s ability to perform a required function under specified conditions.
Error: A deviation between a measured or computed value of an output variable and its true one.
Residual: A fault indicator based on a deviation between measurements and model-equation-based computations.
Fault Detection: Determination of faults present in a system and the time of detection.
Fault isolation: Determination of the kind, location and time of detection of a fault. Follows fault detection.
Failure identification: Determination of the size and time-variant behavior of a fault. Follows fault isolation.
Fault diagnosis: Determination of the kind, size, location and time of detection of a fault. Follows fault detection.
Includes fault isolation and identification.
Analytical redundancy: Use of more (not necessarily identical) ways to determine a variable, where one way uses
a mathematical process model in analytical form.

I. Introduction

IN safety critical processes, like nuclear reactors, chemical plants or aerospace,1,2,6,9 it has become more and more
important to detect a fault and to isolate a faulty component. Indeed, the total failure of a component can increase

the number of emergency shut–downs of a process and cause catastrophes involving human fatalities and material
damage. A system, which includes the capacity of detecting, isolating, identifying or classifying faults, is called a
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fault diagnosis system. The good functioning of the FDI (Fault Detection and Isolation) unit is very important for
the decision making phase.

Model-based fault diagnosis methods have been extensively developed during the last three decades.4 First com-
mon step of these methods is generally the generation of residual signals, which act as fault indicators. Residuals
are ideally close to zero under no-fault conditions, minimally sensitive to noises and disturbances, and maximally
sensitive to faults. The second step is generally the residual evaluation, namely design of decision rules based on
these residuals. To generate residuals, various approaches have been discussed in the literature. Generally, these
techniques use the three main concepts: observers,3–5 parameter estimation7 and parity space relations.8,10

In this paper, we explore parity space approach in static case to propose a soft computing algorithm for measurement
validation in the aerospace field. Indeed, the Vulcan 2 rocket engine is used to propel the main cryotechnic stage of
the European heavy launcher. At the end of 2002, a mechanical failure of the divergent having in charge to accelerate
gases has been known. Many improvements on the divergent itself, the room of propulsion and the turbopumps were
made in order to solve the problem. In parallel, it is very important to supervise all data coming from the sensor
system, for inputs and outputs. Section II describes the problem and defines the objective of this work. In Section III,
we propose a data validation scheme based on parity space approach. Three steps are necessary. Residuals must be
generated, structured and finally evaluated for decision. Section IV describes the complete structure of proposed
algorithm. For illustration, some new simulation results are given in Section V.

II. Problem Statement
Let (S) be a nonlinear system characterized by 5 inputs u = [u1 u2 u3 u4 u5] and 4 states x =

[x1 x2 x3 x4]. Each input or state is measurable at least once (Table 1). Let � be the whole instrumentation
system containing 16 sensors.

Some elements are to be considered: the system (S) is a black box; in a defined operating domain D, 18 static
linear models around operating points are given with influence matrices Mq∈{1,...,18}.

Table 1 Variables and measures1.

Input vector u Output vector x

Variables Measures Variables Measures

u1 ũ1 x1 x̃1,1, x̃1,2, x̃1,3
u2 ũ2 x2 x̃2,1, x̃2,2
u3 ũ3 x3 x̃3,1, x̃3,2
u4 ũ4,1, ũ4,2 x4 x̃4,1, x̃4,2
u5 ũ5,1, ũ5,2

Symbol ∼ is used to represent the measure of a variable. For
example, x̃1,j is the ith measure of variable x1.

Mq
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Fig. 1 Structure of data validation scheme.
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Then, the model can be described by:

x(t) = x(t − 1) + M(t − 1) (u(t) − u(t − 1)) (1)

where M = {m_{i, j}}, i = 4 and j = 5, represents the new influence matrix at t − 1, computed by interpolation
from the system state at t − 1 and the known influence matrices Mq .

The problem consists in the detection and isolation of the sensor faults using all measurements and static
models.

The proposed algorithm includes four phases (figure 1): Structured residual generation, decision-making, fault
identification and data validation.

III. Data Validation Scheme
In this section, we develop the various phases of our approach, from residual generation to data validation.

A. Structured residual generation
The principle consists in using analytical redundancy relations due to the model. The model links the control

vector to the state vector through (1). A distinction is made between direct and systematic residual generation. The
first one directly compares the outputs of sensors with those of models to build residuals. The second one uses the
principle of elimination of unknown variables, based on parity space approach.

1. Direct Residuals Generation
We suppose that the initial state introduced by x(0), which represents the first point belonging to the operating

domain, is given by valid measurements. This assumption of nominal operation is necessary to initialize our algorithm.
Since inputs are measured, the state is given by:

x(t) = x(t − 1) + M(t − 1) (ũ(t) − ũ(t − 1)) (2)

At each time t , a comparison between x(t) and x̃ permits us to generate the following residual vector:

r(t) = x̃(t) − x(t) (3)

The components of this residual vector depend on inputs and outputs measurements. Table 2, called signature table,
indicates then the relationships between the residuals and the variables. All coefficients are either 1 or 0 respectively
according to whether or not a residual depends on a variable. Each column represents the fault signature of the
corresponding sensor.

This table shows that a fault on any input affects all the residuals. But a fault on an output affects only one single
residual. We conclude that: all sensor faults (inputs and outputs) are detectable, but only faults of output sensors are
isolable contrary to those of input sensors.

The principle of residuals generation has to take into account the fact that some inputs or outputs can be measured
with several sensors. Taking into account the significant number of sensors, it was necessary to find a procedure
allowing us to explore in a systematic and rigorous way all data, to generate all redundancy relations.

Table 2 Occurrence of variables in residuals.

ũ1 ũ2 ũ3 ũ4 ũ5 x̃1 x̃2 x̃3 x̃4

r(x̃1) 1 1 1 1 1 1 0 0 0
r(x̃2) 1 1 1 1 1 0 1 0 0
r(x̃3) 1 1 1 1 1 0 0 1 0
r(x̃4) 1 1 1 1 1 0 0 0 1
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2. Systematic Residual Generation
In the case of sensors under no-fault conditions, we can write the relationships between variables and their

measurements; we neglect here the presence of measurement errors. In our case, these relationships are given by:

x̃ = f (x)

ũ = g(u)
(4)

where input and output measurements vectors are: ũ = [ũ1 ũ2 ũ3 ũ4,1 ũ4,2 ũ5,1 ũ5,2] and x̃ = [x̃1,1 x̃1,2

x̃1,3 x̃2,1 x̃2,2 x̃3,1x̃3,2 x̃4,1 x̃4,2] respectively and, f and g two linear functions.
Then, the system is completely described by (1) and (4). In the following, to simplify, the equation (1) will be

replaced by the equation (5) such that the variables (x and u) represent the variations:

x(t) = M(t − 1)u(t) (5)

The equation (4) stays unchanged while considering x and u as variations of the corresponding variables. To relieve
writings, we can link together measurement (4) and model (5) equations by:

F

((
x

u

))
= G

((
x̃

ũ

))
(6)

where F and G are linear functions calculated to separate known (x̃, ũ)T and unknown (x, u)T variables.
The expression (6) is particularly attractive to establish analytical redundancy relations. These relations have to

contain only known variables, i.e. the measurements and the coefficients of the influence matrix M , representing the
system model. To obtain this, it is necessary to eliminate from (6) the unknown variables {x, u} in order to keep only
the known vectors {xm, um}. For that, the parity space approach can be explored as following.

Parity space principle: Let F and G of (6) be two linear functions given by:

F(X) = � · X (7a)

G(X̃) = � · X̃ (7b)

for any vector X = (x, u)T ∈ �16, where � and � are matrices of suitable dimensions.
Step 1: Find a matrix �, such that:

�� = 0 (8)

The objective is to project the known vector X̃ in a space #Span(�) = Span(�)⊥, orthogonal on Span(�), where
the unknown vector X does not appear. For a measurement vector at k, we can write:

G(k) = r(k) + G�(k) (9a)

r(k) ∈ Im(�)⊥ (9b)

G�(k) ∈ Im(�) (9c)

r(k) = �G(k) = ��X̃(k) (9d)

Step 2: Knowing �, solution of (8), we can then generate the residuals vector r by multiplying (6) on the left by �:

r = �G

((
x̃

ũ

))
(10)

#Span(�) represents the space generated by the columns of the matrix �.
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The execution of this algorithm leads for the whole set of sensors to the following set of residuals:

r1 = x̃1,1 − x̃1,2

r2 = x̃1,2 − x̃1,3

r3 = x̃2,1 − x̃2,2

r4 = x̃3,1 − x̃3,2

r5 = x̃4,1 − x̃4,2

r6 = ũ4,1 − ũ4,2

r7 = ũ5,1 − ũ5,2

r8 = x̃1,1 − m11ũ1 − m12ũ2 − m13ũ3 − m14ũ4,1 − m15ũ5,1

r9 = x̃2,1 − m21ũ1 − m22ũ2 − m23ũ3 − m24ũ4,1 − m25ũ5,1

r10 = x̃3,1 − m31ũ1 − m32ũ2 − m33ũ3 − m34ũ4,1 − m35ũ5,1

r11 = x̃4,1 − m41ũ1 − m42ũ2 − m43ũ3 − m44ũ4,1 − m45ũ5,1

(11)

As shown in Table 3, each residual (from r1 to r11), zero under no-fault conditions, is sensitive to a specified
set of sensors. For example, r1 is sensitive only to sensor faults caused by x̃4,1 and x̃4,2. The residuals r12 to
r20 are to be determined later. Through residuals r1 to r11, all faults are detectable (each input or output sen-
sor appears at least once in a residual) but only the output sensor faults are isolable (all corresponding columns
are strongly different). For that, other set of residuals is necessary to detect at least any unique sensor fault.
The following paragraph is concerned with computing a set of structured residuals according to an elimination
procedure.

Table 3 All generated residuals.

Inputs Outputs

Residuals ũ1 ũ2 ũ3 ũ4,1 ũ4,2 ũ5,1 ũ5,2 x̃1,1 x̃1,2 x̃1,3 x̃2,1 x̃2,2 x̃3,1 x̃3,2 x̃4,1 x̃4,2

r1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
r2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
r3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
r4 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
r5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
r6 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
r7 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
r8 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
r9 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0
r10 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0
r11 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0
r12 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0
r13 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0
r14 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1
r15 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0
r16 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0
r17 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0
r18 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0
r19 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0
r20 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0
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3. Generation of Structured Residuals
This is a complementary concept to isolate the detected faults. For that, it is interesting to study now the same

problem for any partial sensor set. The objective is to:
• make separable the fault signatures, i.e. the columns of the table of occurrence must be strongly different.
• examine the set of sensors that can be lost, while continuing to solve the FDI procedure.
In the following, we will show how to generate residuals improving the FDI procedure for input sensor faults.

Any sensor subset can be considered to improve this isolation task. Here, we show only one case for illustration.
Case of ũ4,1 and ũ4,2 input measurements
To improve the FDI procedure of these inputs, the problem is reduced to increase the number of residuals not

depending on them. For that, we solve the residual generation problem without taking into account these input
measurements. Indeed, for the set of sensors �\{ũ4,1, ũ4,2}, the problem can be posed as following. Let ũ and x̃ be
given by: ũ = [ũ1 ũ2 ũ3 ũ5,1 ũ5,2] and x̃ = [x̃1,1 x̃1,2 x̃1,3 x̃2,1 x̃2,2 x̃3,1 x̃3,2 x̃4,1 x̃4,2].

The execution of the proposed procedure, to generate new residuals (10), gives the following new residuals.

r12 = −m24x̃1,1 + m14x̃2,1 + (m11m24 − m14m21)ũ1 + (m12m24 − m14m22)ũ2

+ (m13m24 − m14m23)ũ3 + (m15m24 − m14m25)ũ5,1

r13 = −m34x̃1,1 + m14x̃3,2 + (m11m34 − m14m33)ũ1 + (m12m34 − m14m32)ũ2

+ (m13m34 − m14m33)ũ3 + (m15m34 − m14m35)ũ5,1

r14 = −m44x̃1,1 + m14x̃4,2 + (m11m44 − m14m41)ũ1 + (m12m44 − m14m42)ũ2

+ (m13m44 − m14m43)ũ3 + (m15m44 − m14m45)ũ5,1

(12)

The occurrence of measurements in r12, r13 and r14 is given in Table 3. Some remarks can be done: the solution
of residuals generation problem exists even without the sensors ũ4,1 and ũ4,2; the faults of ũ4,1 and ũ4,2 are now
detectable and isolable; the same result can be obtained to isolate the faults of ũ5,1 and ũ5,2. Other residuals are
required to complete the FDI procedure. Indeed, using our approach, we can obtain the residuals r15 to r20 (Table 3).

B. Decision Making
The nature of the information contained in a residual plays a very important role to define the type of tests. In

our case, several phenomena are interesting to be clarified. All generated residuals contain: measurement noises and
modeling errors.

Taking account several tests in nominal case with no fault, modeling errors are always limited by ε%. Increasing
the number of influence matrices Mq in D decreases this percentage. An appropriate number of matrices permits us
to obtain ε very small. This result strongly participates to reduce the rate of false alarm.

Let ri be any residual from r1 to r20. With the assumption that the modeling errors are very small (or can be
neglected), we have ri ≈ N [0, R] (Gaussian noise) when there is no failure. A failure will make ri to become
non-zero and/or its covariance larger than R. Then, failure detection can be performed by usual statistical testing
techniques between the hypotheses:

H0: ri ≈ N [0, R]
H1: H0 not true (13a)

Subject to the false alarm probability

Pr [accept H1|H0 true] = η (13b)

A simple testing based on the variant threshold γi can be applied, such that:

|rj

i | � 3 γi Failure (14a)

|rj

i | < 3 γi No Failure (14b)
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where rj

i is the last computed value of the residual and γ 2
i the noise-free variances of the residuals, computed on a

sliding window � of size L, given by the interval [rj−L−1
i , r

j−1
i ]. Following each computation of the residuals, a test

(14) is applied. Based on the outcomes of the individual tests, a Boolean instantaneous signature vector � is formed
so that coefficients (�i) = 1 if failure, �i = 0 otherwise, where 1 ≤ i ≤ 20. Each coefficient (�i) is associated to a
residual ri . To isolate sensor failures, it is necessary to compare instantaneous signature vector � with the columns
of Table 3. Then, a fault is isolated on a sensor i, if the corresponding failure signature is realized.

C. Fault Identification and Data Validation
Once the fault is detected and isolated, it is very important to identify its amplitude for compensation. Finally, the

data validation consists in keeping only operational sensors for control system process.

IV. Algorithm
The algorithm of the proposed approach can be described in two main phases.
Design phase: In this phase, the problem consists in generating residuals for solving FDI procedure in the case

of unique sensor faults. Some points are necessary. We start with the whole set of sensors �.
1. Find the set of residuals given by (10),
2. Test: Are unique sensor faults detectable and isolable?

a. If yes, design phase is over,
b. Else, choose a sensor subset �s included in �, representing one or several sensors not isolable. To the

complete residual set, let �s\�s be the sensor system and go to 1.
Computing phase: Once all residuals are defined, this phase consists in the following steps:
1. Compute the residual vector rj at j ,
2. Compute the variance vector γ on the windows [rj−L−1

i , r
j−1
i ]j>L,

3. Test the residuals, using (14), and compute Boolean signature vector �,
4. Compare � with the columns of signatures table (Table 3) to isolate the fault.

V. Simulation Results
In this section, we present now some simulation results based on our algorithm applied to the studied system. All

signals have been normalized between 0 and 1.

Fig. 2 Simulation results.
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Figure 2a gives an illustrative comparison between model outputs (- - -) and measurements (—), s. t.: Y1 = x̃1,1,
Y2 = x̃2,1, Y3 = x̃3,1 and Y4 = x̃4,1 (acquisition frequency = 125 samples/s, duration = 576 s). For Y1, at 369.5 s
(46200 samples), we can observe a deviation between model output and measurement. It is an event to be detected
and isolated by our proposed approach. The last part of the line graphs corresponds to the end of the test. On a sliding
window of size 10, V 1, V 2, V 3 and V 4 are respectively computation results of variances of residuals between Y1,
Y2, Y3 and Y4, and corresponding outputs of the model (Figure 2b). At 369.5 s, using an appropriate threshold, we
can detect a deviation between the model and the real system, i.e. the appearance of a fault.

The considered fault is detected after a delay of 2 sample periods, which corresponds to 16 ms. Here, we show only
4 out of the 20 computed residuals for isolation. In fact, after a fault is detected, we can generate an instantaneous
signature vector�. The isolation consists in comparing columns of Table 3 with the instantaneous signatures generated
at the end of the detection phase. If vector � corresponds to a column in Table 3, then one deduces that the
corresponding sensor is faulty. In our case, it is the 8th column of Table 3, corresponding to sensor x̃1,1. The final
objective of our work is to replace faulty measured data by valid computed data.

VI. Conclusion
A data validation algorithm based on the parity space approach has been developed. This algorithm permits us

to detect and isolate easily any single sensor fault from the control feedback. Indeed, detectability and isolability of
all sensor faults are guaranteed thanks to analytical and physical redundancy. Performances in terms of false alarms,
delays in detection, . . . have been improved by data filtering, residual computing (strongly independent) and testing
based on the sliding window principle.

Acknowledgements
The authors gratefully acknowledge the CNES (Centre National d’Etudes Spatiales) and Snecma–Moteurs that

have financially supported this entire study within the framework of data validation of engines on test benches.

References
1Bonfè, M., Castaldi, P., Geri, W., and Simani, S., “Fault Detection and Isolation for On-Board Sensors of a General Aviation

Aircraft,” International Journal of Adaptive Control and Signal Processing, Early View, March 2006.
2Bonfè, M., Simani, S., Castaldi P., and Geri, W., “Residual Generator Computation for Fault Detection of a General Aviation

Aircraft,” In: ACA 2004. 16th IFAC Sym. on Aut. Cont. in Aero., Vol. 2. IFAC. St. Petersburg, Russia. pp. 318–323.
3Dassanake, S.K., Balas, G.L., and Bokor J., “Using Unknown Input Observers to Detect and Isolate Sensor Faults in a

Turbofan Engine,” In: DASC 2000–The 19th Digital Avionics Sys. Conf. Proc., Vol. 2. IEEE, 2000, pp. 6E5/1–6E5/7.
4Frank, P. M., “Fault Diagnosis in Dynamic System using Analytical and Knowledge Based Redundancy: a Survey and some

New Results,” Automatica, Vol. 26, No. 3, 1990, pp. 459–474.
5Hammouri, H., Kinnaert, M., and El Yaagoubi, E.H., “Observer–Based Approach to Fault Detection and Isolation for

Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 44, No. 10, 1999, pp. 1879–1884.
6Hoblos, G., Chafouk, H., Langlois, N., Guilloteau, R., Le Gonidec, S., and Ragot, J., “Data Validation of an Instrumentation

System using the Parity Space Approach,” 10th IFAC Sym. on Cont. in Transportation Systems, Tokyo, Japan, August 4–6, 2003.
7Isermann, R., and Freyermuth, B., “Process Faults Diagnosis Based on Process Model Knowledge – part I: Principles for

Fault Diagnosis with Parameter Estimation,” Trans of ASME, Vol. 113, 1991, pp. 620–626.
8Massoumnia, M. A., and Vander Velde W.E. “Generating Parity Relations for Detecting and Identifying Control System

Component Failures,” J. Guid. Cont. Dyn., Vol. 11, No. 1, 1988, pp. 60–65.
9Napolitano, M. R., Windon, D.A., Casanova, J.L., Innocenti M., and Silvestri, G., “Kalman Filters and Neural–Network

Schemes for Sensor Validation in Flight Control Systems,” IEEE Trans. on Cont. Sys. Tech., Vol. 6, No. 5, 1998, pp. 596–611.
10Patton, R. J., and Chen, J., “A Review of Parity Space Approaches to Fault Diagnosis for Aerospace Systems,” J. Guid. Cont.

Dyn., Vol. 17, 1991, pp. 278–285.
11Simani, S., Fantuzzi, C., and Patton, R. J., Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques,

Springer-Verlag, London Limited, 2003.

635


